STAT0041: Stochastic Calculus

Lecture 5 - Continuous-time Martingale

Lecturer: Weichen Zhao Fall 2024

Key concepts:

- Right continuous martingale:
- Optional stopping theorem.

5.1 Continuous-time martingale

We first introduce some conception in continuous-time stochastic process and assume filtered probability space satisfies usual conditionon in this lecture.

Definition 5.1 (Sample path) Let $(X_t)_{t\in T}$ be a random process with values in E. The sample paths of X are the mappings $T \ni t \mapsto X_t(\omega)$ obtained when fixing $\omega \in \Omega$. The sample paths of X thus form a collection of mappings from T into E indexed by $\omega \in \Omega$.

Definition 5.2 (Continuity of stochastic process) We say a stochastic process is continuous, if almost surely all of its sample path is continuous. That is,

 $P(\{\omega | t \mapsto X_t(\omega) \text{ is continuous}\}) = 1.$

Right/left-continuous can be defined similarly.

Sometimes it is not clear whether a stochastic process is continuous. We following show that, at the cost of "slightly" modifying the process, we can ensure that sample paths are continuous.

Definition 5.3 (Modification) Let $(X_t)_{t\in T}$ and $(\tilde{X}_t)_{t\in T}$ be two random processes indexed by the same index set T and with values in the same metric space E . We say that \tilde{X} is a **modification** of X if

$$
\forall t \in T, \quad P(\tilde{X}_t = X_t) = 1.
$$

Lemma 5.4 (Theorem 3.18 of [1]) Let $(X_t)_{t\in\mathcal{T}}$ be a supermartingale, such that the function $t \mapsto \mathbb{E}[X_t]$ is right-continuous. Then X has a modification with cadlag sample paths, which is also an \mathscr{F}_t -supermartingale. Especially, every martingale has a modification with cadlag sample paths because $\mathbb{E}[X_t]$ is a constant.

Definition 5.5 (Stopping time) A random variable $\tau : \Omega \to [0,\infty]$ is a stopping time of the filtration \mathscr{F}_t if

 $\{\tau \leq t\} \in \mathscr{F}_t,$

for every $t \geq 0$. The event field of the past before τ is then defined by

$$
\mathscr{F}_{\tau} = \{ A \in \mathscr{F}_{\infty} : \forall t \geq 0, A \cap \{ \tau \leq t \} \in \mathscr{F}_{t} \}.
$$

Example 5.6 (First hitting time) Let (X_t) be right-continuous \mathscr{F}_t adapted process with state space E, and $A \subset E$, then first hitting time to A

$$
\tau_A(\omega) = \inf\{t > 0 : X_t(\omega) \in A\}
$$

is a stopping time.

Example 5.7 Let τ be a stopping time and let σ be an \mathscr{F}_{τ} -measurable random variable with values in $[0,\infty]$, such that $\sigma \geq \tau$. Then σ is also a stopping time.

In particular, if T is a stopping time,

$$
T_n = \sum_{k=0}^{\infty} \frac{k+1}{2^n} \mathbf{1}_{\{k2^{-n} < T \leq (k+1)2^{-n}\}} + \infty \cdot \mathbf{1}_{\{T=\infty\}}, \quad n = 0, 1, 2, \dots
$$

defines a sequence of stopping times that decreases to T.

Definition 5.8 (Martingale) Let $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t>0}, P)$ be a filtered probability space, X = (X_t) be a adapted process on $(\Omega, \mathscr{F}, (\mathscr{F}_t), P)$ satisfying $\mathbb{E}[|X_t|] < \infty$ is called

- (1) a \mathscr{F}_t -martingale if $\forall 0 \leq s < t$, $\mathbb{E}[X_t | \mathscr{F}_s] = X_s$;
- (2) a \mathscr{F}_t -supermartingale if $\forall 0 \leq s < t$, $\mathbb{E}[X_t | \mathscr{F}_s] \leq X_s$;
- (3) a \mathscr{F}_t -submartingale if $\forall 0 \leq s < t$, $\mathbb{E}[X_t | \mathscr{F}_s] \geq X_s$.

Proposition 5.9 (Doob's martingale inequality, Proposition 3.15 of [1])

Let (X_t) be a submartingale with right-continuous sample paths, then for all $c > 0$ and $T < \infty$,

$$
c \cdot \mathbf{P}(\sup_{0 \le t \le T} X_t \ge c) \le \mathbb{E}[X_T^+].
$$

Let (X_n) be a martingale with right-continuous sample paths, and for some $p \geq 1$, $\mathbb{E}|X_t|^p$ ∞ . Then for all for all $c > 0$ and $T < \infty$,

$$
\mathbb{P}(\sup_{0 \le t \le T} |X_t| \ge c) \le \frac{\mathbb{E}|X_t|^p}{c^p}.
$$

5.2 Optional stopping theorem

Lemma 5.10 (Convergence theorem for supermartingales, Theorem 3.19 of [1])

Let X be a supermartingale with right-continuous sample paths. Assume that the collection $(X_t)_{t\geq 0}$ is bounded in L^1 . Then there exists a random variable $X_\infty \in L^1$ such that

$$
\lim_{t \to \infty} X_t = X_{\infty}, \quad a.s.
$$

Lemma 5.11 (Doob's optional stopping theorem (uniformly integrable), Theorem 3.22 of [1])

Let (X_n) be a uniformly integrable martingale with right-continuous sample paths. Then, for every choice of the stopping times τ , σ such that $\tau \leq \sigma$, we have X_{τ} , $X_{\sigma} \in L^{1}$ and

$$
X_{\tau} = E[X_{\sigma} | \mathcal{F}_{\tau}]
$$

Lemma 5.12 (Doob's optional stopping theorem (bounded case), Corollary 3.23 of [1])

Let $(X_t)_{t>0}$ be a martingale with right-continuous sample paths and $\sigma \leq \tau < \infty$ be two almost surely bounded stopping times, then

$$
\mathbb{E}[X_{\tau}|\mathscr{F}_{\sigma}]=X_{\sigma}.
$$

Lemma 5.13 (Doob's sampling theorem, Corollary 3.24 of [1])

Let (X_t) be a martingale and τ be a stopping time both with respect to a filtration (\mathscr{F}_t) , then the stopped process X^{τ} is a martingale.

Moreover, if stopping time τ is bounded, then $\mathbb{E}[X_{\tau}] = \mathbb{E}[X_0]$.

References

[1] Le Gall, Jean-François. Brownian motion, martingales, and stochastic calculus. Springer International Publishing Switzerland, 2016.